工业大数据的意义和价值-凯发体育客户端

2023-03-20 04:35:33 生活百科 646 ℃ 0 评论

“数智”时代下的智能制造

大数据的目的并不是追求数据量大,而是通过系统式地数据收集和分析手段,实现价值的最大化。所以推动智能制造的并不是大数据本身,而是大数据的分析技术。在新制造革命的转型中,是否能够更加有效地利用好大数据,决定了能否在竞争中脱颖而出。在现在的制造中,存在着许多无法被定量、无法被决策者掌握的不确定因素,这些确定因素既存在于制造过程中,也存在于制造过程之外的使用过程中。

前三次工业革命主要解决的都是可见的问题,例如避免产品缺陷、避免加工失效、提升设备效率和可靠性、避免设备故障和安全问题等。这些问题在工业生产中由于可见可测量,往往比较容易避免和解决。不可见的问题通常表现为设备的性能下降、健康衰退、零部件磨损、运行风险升高等。这些因素由于其很难通过测量被定量化,往往是工业生产中不可控的风险,大部分可见的问题都是这些不可见的因素积累到一定程度所造成的。

一、什么是工业大数据分析

工业大数据是工业领域相关数据集的总称,是工业互联网的核心,是智能制造的关键。作为工业大数据的核心技术之一,工业大数据分析技术是工业智能化发展的重要基础和关键支撑。它的定义如下:工业大数据分析是利用统计学分析技术、机器学习技术、信号处理技术等技术手段,结

合业务知识对工业过程中产生的数据进行处理、计算、分析并提取其中有价值的信息、规律的过程。

数据分析起源于用户的业务需求,相同的业务需求会有多个可行方案,每一个方案又有若干可能的实现途径。遇到复杂问题,这些途径可能会被再次细分,直至明确为若干模型。首先了解到的输入输出关系,如特定参数与设备状态之间的关系,这些关联关系即为知识的雏形,然后需要寻找适当的算法,提取和固化这些知识。

二、工业大数据分析和智能制造的关系

大数据与智能制造之间的关系可以总结为:制造系统中问题的发生和解决的过程中会产生大量数据,通过对这些数据的分析和挖掘可以了解问题产生的过程、造成的影响和解决的方式,这些信息被抽象化建模后转化成知识,再利用知识去认识、解决和避免问题,核心是从以往依靠人的经验(experiencebased),转向依靠挖掘数据中隐性的线索(evidence based),使得制造知识能够被更加高效和自发地产生、利用和传承。因此,问题和知识是目的,而数据则是一种手段。今天我们来谈利用大数据实现智能制造,是因为大数据已经成为一个日益明显的现象,而在制造系统和商业环境变得日益复杂的今天,利用大数据去解决问题和积累知识或许是更加高效和便捷的方式。

三、工业大数据分析有哪些类型

根据业务目标的不同,数据分析可以分成四种类型:1、描述型分析描述型分析用来回答“发生了什么”、体现的“是什么”知识。描述型分析一般通过计算数据的各种统计特征,把各种数据以便于人们理解的可视化方式表达出来。2、诊断型分析诊断型分析用来回答“为什么会发生这样的事情”。针对生产、销售、管理、设备运行等过程中出现的问题和异常,找出导致问题的原因所在,诊断分析的关键是剔除非本质的随机关联和各种假象。3、预测型分析预测型分析用来回到“将要发生什么”。针对生产、经营中的各种问题,根据现在可见的因素,预测未来可能发生的结果。4、处方型(指导型)分析

处方型(指导型)分析用来回答“怎么办”的问题。针对已经和将要发生的问题,找出适当的行动方案,有效解决存在的问题或把工作做得更好。

四、工业大数据分析的3b挑战

当实现了设备和产品的仿真之后,数字孪生化即进入了满足多尺度场景的数据融合的需求阶段,这个阶段既需要考虑设备和产品的数据建模,还需要考虑场景或环境的建模,通过两

bad quality: 在工业大数据中,数据质量问题一直是许多企业所面临的挑战。这主要受制于工业环境中数据获取手段的限制,包括传感器、数采硬件模块、通信协议、和组态软件等多个技术限制。对数据质量的管理技术是一个企业必须要下的硬功夫。

broken: 工业对于数据的要求并不仅在于量的大小,更在于数据的全面性。在利用数据建模的手段解决某一个问题时,需要获取与被分析对象相关的全面参数,而一些关键参数的缺失会使分析过程碎片化。举例而言,当分析航空发动机性能时需要温度、空气密度、进出口压力、功率等多个参数,而当其中任意一个参数缺失时都无法建立完整的性能评估和预测模型。因此对于企业来说,在进行数据收集前要对分析的对象和目的有清楚的规划,这样才能够确保所获取数据的全面性,以免斥巨资积累了大量数据后发现并不能解决所关心的问题。

background (below the surface): 除了对数据所反映出来的表面统计特征进行分析以外,还应该关注数据中所隐藏的背景相关性。对这些隐藏在表面以下的相关性进行分析和挖掘时,需要一些具有参考性的数据进行对照,也就是数据科学中所称的“贴标签”过程。这一类数据包括工况设定、维护记录、任务信息等,虽然数据的量不大,但在数据分析中却起到至关重要的作用。

者的共同数字孪生化,才可以形成丰富的数字孪生系统。

需要指出的是,设备和产品的建模和仿真有可能在设计的时候就已经实现了,或者事后需要重构出原有的几何模型和仿真特征,通常情况下,对环境的数字孪生化是进一步建立物理世界和数字空间交互的关键。

从技术的应用来看,人工智能在实现两者无缝数据融合方面至关重要,从国际上多家企业的实践来看,解决多尺度场景的数据融合,对数字孪生体产业化非常重要,考虑到成本问题,这也是数字孪生化的难点所在。

五、工业大数据分析的3c价值

comparison(比较性):从比较过程中获取洞察,既包括比较相似性,也包括比较差异性。比较的维度既可以是在时间维度上与自身状态的比较,也可以是在集群维度上与其他个体的比较。这种比较分析能够帮助我们将庞大的个体信息进行分类,为接下来寻找相似中的普适性规律和差异中的因果关系奠定基础。

correlation (相关性):如果说物联网是可见世界的连接,那么所连接对象之间的相关性就是不可见世界的连接。对相关性的挖掘是形成记忆和知识的基础,简单的将信息存储下来并不能称之为记忆,通过信息之间的关联性对信息进行管理和启发式的联想才是记忆的本质。相关性同时也促进了人脑在管理和调用信息的效率,我们在回想起一个画面或是情节的时候,往往并不是去回忆每一个细节,而是有一个如线头一样的线索,你去牵它一下就能够引出整个场景。这样的类似记忆式的信息管理方式运用在工业智能中,就是一种更加灵活高效的数据管理方式。

consequence (因果性):数据分析的重要目的是进行决策支持,在制定一个特定的决策时,其所带来的结果和影响应该被同等地分析和预测。这是以往的控制系统所不具备的特性,也是智能化的本质。工业系统中的大部分活动都具有很强的目的性,就是把目标精度最大化,把破坏度最小化的“结果管理”。结果管理的基础是预测,例如在现在的制造系统中,如果我们可以预测到设备的衰退对质量的影响,以及对下一个工序质量的影响,就可以在制造过程中对质量风险进行补偿和管理,制造系统的弹性和坚韧性就会增加。

六、工业大数据分析的案例

举例1:计划过程管控

统计各车间当月及年度累计指标完成率,对比反馈时序进度较差的车间,进行针对性改善与问责;时序进度不达标的车间,信息标红高亮显示。

举例2:预测性分析——设备维护计划

针对车间不同机台进行编号,将机台运行状态信息用可视化图形展示,机台用二维图片或3d模型展示,实时监控不同机台的运行状态,异常状态信息即时推送至负责人及其领导手机上,提高异常处理的时效性。

举例3:重要的生产指标预警

1、厂长、车间主任巡视时直接打开移动产线管理报表进行工作指导;

2、晨会,直接打开报表开会,复盘昨日生产情况,异常指标现场问责;

3、生产管理者出差,实时掌握一线生产情况。

七、工业大数据的价值和意义

总而已言之,数据本身不会说话,也并不会直接创造价值,真正为企业带来价值的是数据分析和挖掘之后产生的洞察和行动的价值,是数据经过实时分析后及时地流向决策链的各个环节,是让数据成为面向客户创值服务的媒介和依据。

工业大数据的目的并不是追求数据量的庞大,而是通过系统式地数据收集和分析手段,实现价值的最大化。所以推动工业价值转型和智能制造的并不是大数据本身,而是大数据分析技术所带来的洞察,行动的准确性与速度。在新制造革命的转型中,更加有效地积累和利用数据资源与知识的传承,决定了能否在新竞争环境中脱颖而出。

工业大数据定义了制造价值的新主张,这个价值的应用既可以外向,也可以是内向。内向是利用大数据去解决和避免制造系统中的“不可见”问题,实现无忧的制造环境。外向是利用大数据在产品的使用过程向用户提供智能增值服务,实现制造价值的延续。这两者对于中国制造而言,一方面是解决制造“大而不强”的挑战,另一方面是改善制造附加值较低的瓶颈。让“不可见的数据世界”提供更多的价值,不断提升企业对制造的理解和知识积累速度。

注释:图片文字来源于网络

关注河雒小智,带你走进实验室智慧空间~

同类热门推荐 大数据时代的核心价值,都把握住了吗? 81125人看过 大数据和金融的核心价值是什么? 84961人看过 谈谈大数据及大数据的价值 6314人看过 数据在四个层面上的价值思考 24727人看过 别什么东西都往家里放,尤其是这三样 47913人看过 本站只为传播信息,不对所发布的内容本身负责。如有凯发k8国际手机app下载的版权及其它问题,请联系站长处理。

本文tag:[大数据] [数据] [价值]

网站地图